A theory of incremental compression

Arthur Franz
Independent researcher

Email: franz@fias.uni-frankfurt.de

Motivation

• AGI has to construct models / descriptions of the world given its observations: induction

• Main principle: Occam’s razor. Concise, parsimonious, short

• Solomonoff’s universal induction has solved the problem in theory.

• How to build a general AI that finds good descriptions of the world in a wide range of environments?

• Universal Search is general but inefficient: $2^{l(p)+1}t(p)$
 0, 1, 00, 01, 10, 11, 000, 001, 010, 011,...

• Current efficient approaches are not general (PCA, deep learning): “narrow AI”

For AGI:
How to make things practical while still staying general?
Describing stuff in practice is incremental

• Objects have features: size, shape, color, location,...

Object encoding, e.g. as binary string

- Size spec
 - Everything except size
- Shape spec
 - Everything except size, shape
- Color spec
 - Everything except size, shape, color
- Location spec

• Features are independent properties
• If features are described concisely, the full description will be concise as well: Shortest description = size + shape + color + location

• General mathematical theory of incremental compression is presented here
• Exponential speed up compared to Levin Search, while still general
A single compression step

\[f'(x) = p \quad f(p) = x \]

\[f \quad p \]

feature parameters

finite strings \leftrightarrow \text{integers} \leftrightarrow \text{Turing machines}

Goal: Find shortest feature \(f^* \) and descriptive map \(f'^* \) such that \(f^*(f'^*(x)) = x \) and some compression has been achieved: \(l(f^*) + l(p) < l(x) \), where \(p \equiv f'^*(x) \)
Full compression scheme

Example:

\[x = 10110111011110111110 \ldots \]

\(f_1 \) prints \(m \) 1’s and attaches a 0

\[p_1 = 1, 2, 3, 4, 5, \ldots \]

\(f_2 \) starts with \(p_2 = 1 \) and counts up
Features and parameters are independent

1. f^* is incompressible: $K(f^*) = l(f^*) + O(1)$

2. Representation of x breaks down into an independent feature and its parameters:

 $K(x) = K(f^*, p) = K(f^*) + K(p) = l(f^*) + K(p)$ up to additive constants.

Intuition:
If the feature and its parameters contained common information, the feature could be made even shorter. It doesn't need that information since it takes it along when computing x.
Orthogonal feature basis

The shortest features \(\{f_i^*\} \) constitute a complete basis of \(x \):

\[
K(x) = l(f_1^*) + K(p_1) = l(f_1^*) + l(f_2^*) + K(p_2) = \cdots = \sum_{i=1}^{k} l(f_i^*)
\]

Since \(p_i \) is independent of \(f_i^* \), all the following features are as well. Thus, the mutual algorithmic information between features is zero:

\[
I(f_i^*|f_j^*) = 0 \text{ for all } i \neq j
\]

\(\{f_i^*\} \) is an orthogonal basis of \(x \)

Efficiency: \(2^{l(f^*)} \approx 2^{K(x)/k} \ll 2^{K(x)} \)

What about \(l(f'^{*}) \)?
Bound on the length of the descriptive map

\[l(f'^*) \leq \log K(x) + 2 \log \log K(x) + O(1) \]

\[2^{l(f'^*)} \lesssim K(x) \ll 2^K(x) \]

In general:

\[K(p) \leq K(p|z) + K(z) + O(1) \]

Condition on \(x \) and set \(z = K(x) \):

\[K(p|x) \leq K(p|K(x), x) + K(K(x)|x) + O(1) \]

\[\downarrow \quad \downarrow \]

\[l(f'^*) \quad O(1) \]

Since

\[K(K(x)|x) \leq \log K(x) + 2 \log \log K(x) + O(1) \]

the claim follows.
Efficiency of incremental compression

Time complexity, if universal search is used to find the feature and descriptive map:

\[O \left(2^{l(f^*)} + l(f^*) \right) \leq O \left(K(x) (\log K(x))^2 2^{l(f^*)} \right) \]

Time complexity of a potential algorithm for incremental compression goes like:

\[\sim \sum_{i=1}^{k} 2^{l(f^*_i)} \]

Recall that \(K(x) = \sum_{i}^{k} l(f^*_i) + O(1) \)

Therefore, for non-incremental search we get, up to multiplicative constants:

\[2^{K(x)} = \prod_{i=1}^{k} 2^{l(f^*_i)} \gg \sum_{i=1}^{k} 2^{l(f^*_i)} \]

Incremental search is much more efficient than non-incremental search!
Discussion and Outlook

Is this practical?
• Already demonstrated: General incremental compression in my last year’s AGI paper

Realistic applications?
• Better AIXI approximation? Beyond Tic Tac Toe and Pac Man
• 100-bit worlds

Future work:
• How to find features?
• Hierarchical compression

Incremental compression is fast, general and much closer to practical application than (non-incremental) Universal Search
Thank you!